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SECOND-ORDER STATISTICS OF SPECTRAL AND CORRELATION ESTIMATES
OBTAINED BY MEANS OF WEIGHTED OVERLAPPED FFT PROCESSING

1. INTRODUCTION

An efficient method of estimating the spectral and/or correlation characteristics of a
stationary random digital temporal process, {g(k)}, is by the use of weighted overlapped fast
Fourier transform (FFT) procedures. In particular, a weighting sequence {w(k)} of finite
duration K is overlaid on the long input data sequence {g(k)} and the product is subjected to an
FFT of size N, yielding complex frequency coefficients. Parameter N governs the frequency
spacing of the coefficients. The magnitude-squared frequency coefficients for this weighted
segment of data are stored in computer memory. Then, the weighting sequence is lagged
(delayed) by L units of time and the FFT procedure is repeated on the weighted input data.
When a sufficient number of these frequency-transformed segments are available, each with a
different time lag L, an average is formed of the magnitude-squared frequency coefficients,
thereby yielding an estimate of the power density spectrum of the input data. If and when an
estimate of the correlation function of the input data is also desired, an inverse FFT of the
magnitude-squared frequency coefficients is performed, yielding correlation estimates in the
time-delay domain.

The joint higher-order probability density functions of the spectral and/or correlation
estimates are often of importance in signal processing. However, there are features of the FFT
processing above that make this virtually impossible analytically. Even if input data {g(k)} are
zero-mean, white, and Gaussian, the overlap of adjacent weighting sequences, that is, lag L less
than segment duration K, coupled with the nonlinear operation of magnitude-squared frequency
coefficients and the subsequent averaging, leads to statistical problems that are analytically
intractable. Although the joint moment-generating function can often be calculated for some of
these types of processing operations, the required matrix manipulations have storage and size
requirements that are frequently not practical. Also, the interaction of the fundamental parameters,
namely, weighting duration K, temporal lag L, and FFT size N, lead to complications in the
analysis.

Accordingly, the approach here is limited to determination of the first-order and second-
order statistics of the spectral and correlation estimates. Several cases are considered, including
both white and colored Gaussian input data. Lag L is arbitrary, thereby allowing for study of the
adjacent time segments, as well as the separated (disjoint) time segments of data. The FFT size
N is also arbitrary, thereby allowing for the effects of wraparound on the estimates and their
stability. In particular, the dependence between estimates obtained at different segment locations
and at different frequency bins is investigated, and closed-form results for the means and
covariances are obtained.
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Section 2 of this report contains the derivation of the second-order statistics of the
magnitude-squared spectral estimates. Then, three different cases of correlation estimates are
investigated in sections 3, 4, and 5, each progressively more general and more difficult
analytically. Section 6 treats the statistics of the complex frequency coefficients themselves.
Finally, appendixes A and B present detailed investigations into several special topics.
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2. STATISTICS OF MAGNITUDE-SQUARED SPECTRAL ESTIMATES

Input data sequence {g(k)} consists of independent, real, Gaussian, random variables (RVs)
with zero mean and unit variance. Real weighting sequence {w(k)} is defined for all integer k,
but is nonzero only for k = 1: K. A complex spectral estimate in frequency bin n is obtained
according to

z(n) = E g(k) w(k) exp(-i2;rnk/N) for n = 0:N-1. (1)
k

The infinite sum on k is automatically terminated to K terms by the weighting; this isolates a
segment of the data stream {g(k) }. The integer N governs the frequency spacing of the complex
spectral estimates {z(n)}. Since

z(N-n)=z*(n) forn=1:N-1, (2)

it is only necessary to consider the range n = 0 : N/2 for {z(n)}, where Nis presumed even.

In addition, another set of complex spectral estimates is obtained from a lagged data set
relative to sequence {g(k)}, according to

y(n) = Y g(k) w(k - L) exp[-i2;' n (k - L)/N] = g(k + L) w(k) exp(- i2ff nk/N), (3)
k k

where L is the amount of lag between the two sets of data and is arbitrary. If lag L is greater than
or equal to weighting duration K, the two sets of spectral estimates in equations (1) and (3) are
statistically independent of each other, because they involve different sets of independent,
Gaussian RVs. Interest here will be concentrated on the case 0 < L < K, meaning that the two
segmented data sets encountered in equations (1) and (3) are statistically dependent on each other,
thereby making complex RVs {z(n)} and {y(n)} statistically dependent on each other. It is also
assumed that N > K; thus, the various integers of the following spectral analysis will always
satisfy

0• L <K < N; (4)

however, L can be arbitrary in general.

The magnitude-squared spectral estimates of interest are

q(n) = Iz(n)12 = E g(k) g(j) w(k) w(j) exp[-i2f n(k - j)/N] for n = 0: N/2, (5)
k,j
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and

P(E) = y(n)12 = E g(k + L) g(j + L) w(k) w(j) exp[-i2ýrn(k - j)/N] for n = 0: N/2, (6)
k,j

where integer n need not be equal to n. The autocorrelation of real data sequence {g(k)} is

E{g(k) g(j)} = 6i(k -j), (7)

where E{ } denotes an ensemble average, and the Kronecker delta is defined here as

{ fork =0
.(k) otherwise4- (8)

Then, from equation (5), the mean of magnitude-squared spectral estimate q(n) is immediately

E{q(n)}=EW2 (k) forall n. (9)
k

Of course, spectral estimates {p(n)} have the same common mean value.

The crosscorrelation of the two spectral estimates in equations (5) and (6), for two different
(or equal) frequency indices n and n, is

CC - E{q(n) p(n)} = l E{g(k) g(j) g(k + L) g(j + L)} w(k) w(j) w(k) w(j)
ki ki(10)

x exp[-i21r{n(k - j) + n(k_- j)}/N] for n = 0: N/2, n =0: N/2.

Since data sequence {g(k)} is Gaussian, the ensemble average in equation (10) can be written,
with the help of equation (7), as a sum of three terms, namely,

.(k - j).5(k - j) + 6(k - k - L) 5(j - j - L) +±5(k - j - L) 5(j - k - L). (11)

Substitution of the first product of Kronecker delta functions into equation (10) yields the first
component of the crosscorrelation CC as

2

CC1 = w 2(k) w2(k) = w2(k) = E{q(n)} E{p(n)}. (12)
k,kk

Thus, the sum of the two remaining components of CC will be the covariance of RVs q(n) and
p(n).
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Substitution of the second product of equation (11) into equation (10) yields the second
component of CC as

CC2 = 3 w(k) w(k - L) w(j) w(j - L) exp[-i2z(n + n) (k - j)/N]
k,j

2 (13)
= • w(k) w(k - L) exp[-i2zi(n + _n) k/N]

k

At this point, it is useful to define the complex ambiguity function (CAF) of real weighting
sequence {w(k)} as

z(m, n) I w(k) w(k - m) exp(-i27c n k/N) for all m, n. (14)
k

Then,

CC 2 = Iz(L, n + n) 2 (15)

The CAF X(m, n) has period N in variable n. Also,

z(L,n)=0 if L>K, z(L,N-n)=;*(L,n). (16)

The third component of CC is obtained by substituting the third product of equation (11)
into equation (10), namely,

CC3 = I w(k) w(k-L) w(j) w(j-L) exp[-i21r(n-n)(k-j)/N] = Iz(L,n-n_)[ 2. (17)
k,j

Thus, as noted under equation (12), the covariance of interest is

cov{q(n),p(n)} = 1z(L,n- n) 2 + z(L,n +n)I2 for n = 0: N/2, n = 0 N/2. (18)

Equations (18) and (14) are the main results. Lag L is arbitrary; however, if L is taken
larger than or equal to K, the CAF in equation (14) will be zero, meaning that all the spectral
estimates {q(n)} and {p(n)} are uncorrelated with each other for all n, n. As a special case of
equation (18), by setting L = 0, there follows

cov{q(n),q(n)} = Ix(0,n -n)I 2 + z(0, n + n) 2 for n = 0: N/2, n = 0: N/2, (19)

which is the covariance of just the spectral estimates {q(n)}. As a further special case,

var{q(n)} = X(0,0)2 + z(0,2n)12 for n = 0: N/2. (20)
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Thus, for example,

var{q(0)} = var{q(N/2)} = 2 z(0,0)2. (21)

For 0•< L < K, define

F(L, n)= • w(k) w(k - L) exp(-i2r n k/N) for n 0: N -1. (22)
k

This quantity can be realized in MATLAB as an FFT:

F(L,:) = fft(w(L + 1: K). * w(' K - L), N). (23)

Then, the CAF is available according to

X(L, n) = F(L,1 + mod(n, N)) for all n. (24)

Since integers n and n are limited to 0: N/2, the mod function comes into play when

n=N/2 andn=N/2, or n+n=N. (25)

Finally, the mean of the spectral estimates in equation (9) can be expressed in terms of the
CAF as E{q(n)} = z(0,0) for all n. An example MATLAB program for the covariance matrix is
shown in figure 1.

NON-WHITE GAUSSIAN INPUT DATA

If the input data correlation in equation (7) is replaced by

E{g(k) g(j)} = C(k-j), C(0) = 1, (26)

which is a real even function, then the mean in equation (9) is replaced by

E{q(n)} = C(k- j) w(k) w(j) exp[- i2Z n(k - j)/N]. (27)
k,j

Letting m = k - j, there follows

E{q(n)} = ) C(m) w(k) w(k - m) exp(- i2 ff nm/N) = Z exp(-i27rnm/N) C(m) , (nm), (28)
k,m m

where
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clear all
close all hidden

K=1024; % Length of weighting
L=512; % Lag (shift) of adjacent segment; 0
<= L < K
N=2048; % FFT size; K <= N
w-hamming(K); % Weighting sequence
% w-hann(K);
% w=hann(K+1); w-w(2:K+l);
% w=hann(K+2); w=w(2:K+l);

average=sum(w. ^ 2 );
F=fft(w(L+1:K).*w(l:K-L),N); % F Depends on lag L
F2=F.*conj (F) ;
cov2=zeros (N/2+I,N/2+1);
for na=0:N/2

for nb=O:N/2
td=F2 (1+mod(na-nb,N));
ts=F2 (l+mod(na+nb,N));
cov2 (na+l, nb+l) =td+ts;

end
end

Figure 1. MA TLAB Example for the Covariance Matrix

(kw(m)= w(k) w(k-m) (29)
k

is the autocorrelation of weight sequence {w(k)}, and 0" (m) = 0 for ml > K.

On the other hand, if N > 2K, and if the input data correlation C(k) is expressed in terms
of the real and even input data spectrum S(m) according to (see appendix A)

(Ifor IkI < N12]
C(k) = G(k) Y exp(i27r km/N) S(m), G(k) = 1 k (30)

m10 for kI > N/2J

and if window W(n) is defined as

W(n) = I exp(- i2;T nk/N) w(k), (31)
k

then substitution into equation (28) leads to mean value

E{q(n)} = Z S(m) IW(n - m) 2. (32)
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The product G(m) 0,,w(m) that occurs upon substitution into equation (28) is equal to 0"w(m) for
all m when N _> 2 K. On the other hand, if only the weaker restriction N Ž K is in effect, the
gating function G(m) partially truncates 0,w (m), thereby obviating the simple relation (32).

Relation (32) is recognized as a frequency domain convolution of the input data spectrum
with the magnitude-squared window of the weighting sequence. Equation (28) is a correlation
domain expression for the mean of the magnitude-squared spectral estimate q(n), whereas
equation (32) is a frequency domain expression for this same quantity. However, relation (32)
requires that N_> 2K, whereas relation (28) only requires N _> K.

For non-white Gaussian input data, the crosscorrelation CC of two different spectral
estimates q(n) and p(n) is still given by general relation (10). However, equation (11) is now
replaced by

E{g(k) g(j) g(k + L) g(j + L)} = C(k- j) C(k- j)

+ C(k - k - L) C(j - j - L) + C(k - j - L) C(j - k - L). (33)

Substitution of the first product of equation (33) into equation (10) yields the first component of
the crosscorrelation CC as

CC, =: C(k- j) C(k - j) w(k) w(j) w(k) w(j) exp[-i2z {n(k - j) + n(k - j)}/N]
kjYj

SQC(k - j) w(k) w(j) exp[- i2z n(k - j)/N]

k,j (34)
I C(k - j) w(k) w(j) exp[- i2ffn(k - j)/N]
kj

E{q(n)} E{p(n)}.

Thus, the sum of the two remaining components of CC will be the covariance of RVs q(n) and
p(_n).

Substitution of the second product of equation (33) into equation (10) yields the second
component of CC as

CC2 = Y C(k - k - L) C(j - j - L) w(k) w(j) w(k) w(j) exp[-i2n- {n(k - j) + n(k - j)}/N]
kj kj

= Z k - k - L) w(k) w(k) exp[- i2;r(nk + nk)/N] (35)

k,k

* C(j - j - L) w(j) w(j) exp[+ i2Zr(nj + nj)/N].
j,J

8



Inthe k,k sum, let k =k- m toget

I C(m - L) w(k) w(k - m) exp[- i27i nk/N - i2Tnn(k - m)/N]
k,m

= : exp(i2nrnm/N) C(m - L) I w(k) w(k - m) exp[- i2,(n + n)k/N] (36)
m k

E Z exp(i2ZTnm/N) C(m - L) z(m, n + n),
m

upon use of equation (14). A similar procedure applied to the j,j sum in equation (35) leads to

2

CC2 = exp(i2;Tnm/N) C(m - L) X(m, n + n)
m

2 (37)

= exp(i2•nnp/N) C(p) z(L + p, n + n)
P

The third component of CC is obtained by substituting the third product of equation (33)
into equation (10). Then, a procedure similar to that employed in equations (36) and (37) yields

CC3 = exp(- i2;rnm/N) C(m - L) X(m, n - n)

2 (38)

= exp(- i2urnp/N) C(p) X(L + p, n - n)
P

Finally, as noted under equation (34) and using the evenness of real correlation C(m), the
covariance of interest can be modified into the two following equivalent forms:

2

cov{q(n),p(n)} = exp(i2zrnm/N) C(m) X(L -r, n - n)
m

2

+ E exp(i2n rnm/N) C(m) z(L + m, n + n)
S(39)

S2= • exp(- i27nrnm/N) C(rn) z(L + rn,n- nq)

S+,0 2 .

+ E exp(i27rn m/N) C(m) X(L + m, n + n)

By setting L = 0, there follows

9



2

cov{q(n),q(n)} = exp(-i2;Tnm/N) C(m) X(m,n-n)
S2 (40)

+ Z exp(i2;Tn m/N) C(m) X(m, n + n)

Finally,

2

var{q(n)} = exp(-i2grnm/N) C(m) y(m,O)
12 (41)

+ Y, exp(i2;Tn rn/N) C(mn) X(m,2 n)

When the data correlation C(m) is specialized to 5(m), namely, white Gaussian input noise,
these results reduce to equations (18) through (20).

RELATION TO CORRELATION ESTIMATES OF THE INPUT DATA

Correlation estimates of the input data {g(k)} can be obtained from the magnitude-squared
spectral estimates {q(n)} according to an inverse FFT:

1 N-1
r(m) = exp(i2'rnm/N) q(n) for m = 0: N - 1. (42)

N=0

Reference to equations (2) and (5) reveals that

q(N - n) = q(n) for n = 1: N - 1. (43)

Use of this relation in equation (42) shows that r(m) is real for all m and that

r(N-m) = r(m) form =1: N-1. (44)

Then, it is only necessary to consider correlation estimates

{r(m)} form = 0: N/2. (45)

Let M = N/2 +1 and define vectors

10



q = [q(O) q(1) ... q(N - 1)]T,
1

e(m) = -[1 exp(i2zrm/N) ... exp{i27r(N-1)m/N}]T form=0:N/2, (46)
N

r = [r(O) r(1) ... r(N12)]T,

and N x M matrix

e = [e(O) e(1)-.. e(N/2)]. (47)

Then, by reference to equation (42),

r = eT q. (48)

The mean of correlation-estimate vector r is

E{r} = eT E{q} (49)

in terms of the mean of spectral vector q, given by equations (28) or (32). Let the covariance
matrix of N x 1 vector q be denoted by Cqq; this quantity is available from equation (40). The
covariance of vector r is then

cov{r} = E{[r - E{r}] [r - E{r}]"} = eT Cqq e (50)

by use of equation (48). The matrix Cqq is N x N and is real, while matrix e is N x M and is
complex; see equations (46) and (47). Nevertheless, the M x M covariance matrix of r,
obtained via equation (50), is purely real. Recall that M = N/2 + 1.

Another set of correlation estimates can be obtained from the alternative spectral estimates
in equation (6), namely,

1 N-I

s(m) = Y- • exp(i27r mn/N) p(n) form = 0: N/2. (51)
N ,=

The M x M covariance matrix between sets (45) and (51) is given by

cov{r,s} = eT Cqp e, (52)

where covariance matrix Cqp is available in equation (39), and is N x N and real.

A shortcut is possible by observing that equations (42) through (44) can be combined to
yield

11



1 N/2-1

r(m)= [q(O) + (-1)m q(N/2) + 2 Y cos(2r nm/N) q(n)] for m= 0: N/2, (53)
N n=1

which involves only real quantities. Define M x 1 vectors (M = N/2 + 1)

1
f(m) = -[1 2cos(2,rm/N) ... 2cos{2rzm(N/2-1)/N} (_1)m]T form =0: N/2,

N (54)

C=[q(0) q(l) ... q(N/2)]T , j=[p(O) p(l)...p(N12)]T,

and M x M matrix

f = [f(0) f(1)... f(N/2)]. (55)

Then,

r= fT 4 and s = fT 1 . (56)

The covariance matrix of vectors r and s then becomes

cov{r,s} = f T C4 f. (57)

Covariance matrix C is M x M and real, while matrix f is also M x M and real; here,
M = N/2 + 1. Thus, equation (57) has two advantages relative to equation (52), namely, smaller
matrices (by a factor of two) and purely real quantities. The information required for
construction of the covariance matrix CP in equation (57) has been presented in equation (39).

More explicit relations for these correlation-estimate statistics are presented in sections 3, 4,
and 5. Also, the statistics for the complex spectral estimates are presented in section 6.
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3. STATISTICS OF CORRELATION ESTIMATES
FOR WHITE DATA AND N _> K

Sequence {g(k)} consists of independent, real, Gaussian, random variables (RVs) with zero
mean and unit variance. Real weighting sequence {w(k)} is defined for all integer k, but is
nonzero only for k = 1: K. A complex spectral estimate in frequency bin n is obtained
according to

z(n) = g(k) w(k) exp(-i2z nk/N) for n = 0 N-1. (58)
k

The infinite sum on k is automatically terminated to K terms by the weighting; this isolates a
segment of the data stream {g(k)}. The integer N governs the frequency spacing of the complex
spectral estimates {z(n)}. Integer N is presumed even.

In addition, another set of complex spectral estimates is obtained from a lagged data set
according to

y(n) = g(k) w(k - L) exp[-i2r n (k - L)/N] = • g(k + L) w(k) exp(- i2)i nk/N), (59)
k k

where L is the amount of lag between the two sets of data and is arbitrary. If lag L is greater
than or equal to weighting duration K, the two sets of spectral estimates in equations (58) and
(59) are statistically independent of each other, because they involve different sets of
independent Gaussian RVs. Interest here will be concentrated on the case 0 < L < K, meaning
that the two segmented data sets encountered in equations (58) and (59) are statistically
dependent on each other, thereby making complex RVs {z(n)} and {y(n)} statistically dependent
on each other. It is also assumed that N > K; thus, the various integers of the following analysis
satisfy

0• L < K < N, (60)

but L can be arbitrary in general.

The correlation estimates of interest are defined according to inverse FFTs as

IN1
r(m) -- z(n)l2 exp(i2z nm/N) for m = 0:N-1 (61)

N ,0

and
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N-I

q(m) = ly(n)I exp(i2Zf nm/N) for m 0: N-i. (62)
n=0

By using the property from equation (58) that

z(N-n)=z*(n) for n=l:N-1, (63)

it can be shown that all the correlation estimates {r(m)} in equation (61) are real. It then also
follows that.

r(N-m)=r(m) for m =1:N-1. (64)

Therefore, it is only necessary to consider the correlation estimates

{r(m)} for m=0:N/2 (65)

in the following. A similar set of properties holds for the alternative set of correlation estimates
{q(m)} in equation (62).

The autocorrelation of the white data sequence {g(k)} in equation (58) is

E{g(k) g(j)} = i5(k - j), (66)

where the Kronecker delta function is defined here as

{ 1 fork 0 0
8(k) =.0 otherwise (67)

Then, from equation (58), the mean of magnitude-squared spectral estimate z(n) is immediately

E{lz(n)12 } =E w2(k) forn=0:N-1. (68)
k

Therefore, the mean of correlation estimate r(m) in equation (61) is

1 N-1

E{r(m)} I w(k) - exp(i2r nm/N)=• w=(k) (5N(m), (69)
k Nn=0  kz

where

(5 M i[1 form =0,±N,±2N,..(0
6x(m)--= 10otherwise } (70)
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is the periodic Kronecker delta function. Therefore, use of equations (65) and (70) reveals that

equation (69) can be simplified to

E{r(m)} = 0 (71)I w 2  for m 1: N/2

Of course, correlation estimates {q(m)} in equation (62) have the same mean values.

The next statistical quantity of interest is the covariance between correlation estimates

r(m) and q(rn) in equations (61) and (62), where integers m and m may be equal or not. The

crosscorrelation of these two RVs is
1 N-1 1 yE1

CC - E{r(m) q(m)} = - E{ z(n) 2 Iy(n)I} exp[i2;f(nm + nm)/N]. (72)
n,n=O

Denote the ensemble average in equation (72) as A. Then, from equations (58) and (59),

A = • E{g(k) g(j) g(k + L) g(j + L)} w(k) w(j) w(k) w(j)
kjk. (73)

x exp[-i2z {n(k - j) + n(k - j)}/N].

Denote the ensemble average in equation (73) as B. Then, using the Gaussian character of data

sequence {g(k)} and equation (66), this ensemble average can be expressed as the sum of three
terms, namely,

B = 5(k - j) 5(k - j) + (5(k - k - L) 5(j - j - L) + ,5(k - j - L) 5'(j - k-L). (74)

Substitution of the first product of Kronecker delta functions into equation (73) yields the
first component of the average A as

AI = E w2(k) w2(k) = w2(k) . (75)
k,kk

Use of this result in equation (72) yields the first component of the crosscorrelation CC as

CC, = w2(k) 27 " 2 exp[i2f2(n +nrn)/N]= w2(k) 2N(m) S(M )

N epi1~mn 1]n,n=0 (

(76)

= E{r(m)} E{q(m)},
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by reference to equation (69) and the comment under equation (71). Thus, the sum of the two
remaining components of CC in equation (72) will be the covariance of RVs r(m) and q(m).

Substitution of the second product of equation (74) into equation (73) yields the second
component of average A as

A2 = I w(k) w(k - L) w(j) w(j - L) exp[-iZr (n + n)(k - j)/N]. (77)
k,j

Use of this result in equation (72) yields the second component of the crosscorrelation CC as

CC 2 = w(k) w(k - L) w(j) w(j - L)
k,j

1 N-I

x U--IO exp[-i2ff(n + n)(k- j)/N + i2r(nm + nm)/N]n,n=0 (78)

- Y w(k) w(k - L) w(j) w(j - L) 5N(m - k +]j), (T - k + j).
k,j

The second periodic Kronecker delta function is nonzero when

j = k - m + p N, (79)

where p is an arbitrary integer, positive or negative or zero. Then, there follows

CC2 = • w(k)w(k-L)Z w(k-rm+pN) w(k-mn+pN-L)SN(m-rM+pN). (80)
k p

The p N term in the periodic 5
N function can obviously be dropped. Since both m and m are

limited according to equation (65), the subscript N can also be dropped.

Now, define the function

h(k,L) = w(k) w(k-L), (81)

which is of length K - L. Then, equation (80) yields

CC2 = (5(m-M) I h(k,L) h(k-m+pU,L)
k p (82)

= 05(m - m) h(k,L) [h(k - m,L) + h(k - m + N,L) + h(k - m - N,L) +...].
k

Also, define the function
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H(m,L) = • h(k,L) h(k -m,L) for allL, m. (83)
k

Function H(m, L) is even in m and

H(m,L) # 0 only for Im < K -L. (84)

Equation (82) can now be expressed as

CC2 =,5(m - m) [H(m,L) + H(m - N,L) + H(m + N,L) +...]. (85)

But since N _> K and 0 •< m <N / 2, the only terms that need to be kept are

CC2 = 3(m - m) [H(m,L) + H(m - N,L)] for m = 0: N/2, (86)

where some of the terms may be zero.

Substitution of the third product of equation (74) into equation (73) yields the third
component of average A as

A 3 = Y w(k) w(k- L) w(j) w(j- L) exp[-i2z (n- -n)(k - j)/N]. (87)
k,j

The only difference with equation (77) is in the polarity of the n term. Use of this result in
equation (72) yields, after simplifications similar to equation (78), the third component of the
crosscorrelation CC as

CC3 = 1: h(k,L) h(j,L) 3N(m-k+ j) 5N(m_+ kk-j). (88)
k,j

Definition (81) has also been employed here. At this point, the argument is identical to that used
above in equations (79) through (86), with the end result that

CC3 = 3(m) 5(m) H(O, L) + 8(m - N/2) 3(m - N/2) 2 H(N/2, L). (89)

When results (86) and (89) are added together, the end result is the desired covariance, as
noted under equation (76); namely,

.cov {r(m), q(__m)} = 5(m - m) [H(m, L) + H(m - N, L)]
+ 5(m) 5(m) H(O, L) + 8(m - N/2) 3(m - N/2) 2 H(N/2, L)

for m, m = 0 : N/2. In more specific terms,
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cov{r(O),q(O)} = 2 H(O,L),

cov{r(N/2),q(N/2)} = 4 H(N/2,L),

cov{r(m),q(m)} = H(m,L) +H(m -N,L) form =1: N/2 -1, (91)

cov{r(m),q(mr)} = 0 form # m.

The function H(m, L) is defined in equation (83) as the autocorrelation of sequence {h(k, L)}.
This latter sequence is defined in equation (81) as the product of the original weighting {w(k)}
and a delayed version by L units. An example MATLAB program for equation (91) is given in
figure 2.

function stat_pmb
clear all
close all hidden

global K L xh
K=1024; % Length of weighting
L=512; % Lag (shift) of segment; 0 <= L < K
N=2048; % FFT size; K <= N
% w=hann(K);
% w=hann(K+l); w-w(2:K+1);
w=hann(K+2); w=w(2:K+l); % Eliminate zero weights

average=sum(w. ^ 2 );

hzw(L+:K) .*w(l:K-L);
xh=xcorr(h);
covOO=2*H(O); % cov{r(O),q(O)}
cov2=zeros (N/2, I);
for m=l:N/2-1

cov2(m)=H(m)+H(m-N); % cov{r(m),q(m) } for m=l:N/2
end
cov2 (N/2) =4*H (N/2);

keyboard

function w = H(m)
global K L xh
M=K-L;
if (abs (m) >=M)

w=0 ;
else

w=xh (M+m);
end

Figure 2. MA TLAB Example for Equation (91)
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4. STATISTICS OF CORRELATION ESTIMATES
FOR NON-WHITE DATA AND N -Ž 2 K

The results in the previous section were obtained by means of frequency domain relations.
It is now more convenient, for non-white data, to work solely in the time domain. From
equations (58), (61), and (70), there follows the correlation estimate

N-I 2

r(m) = ± exp(i27 mn/N) Y g(k) w(k) exp(-i21rnk/N)
N k

1 N-1

= Z g(k) g(k) w(k) w(k) - . exp[i2z(m - k + k) n/N] (92)
k,_k Nn=0

= Z g(k) g(k) w(k) w(k) 15N(m-k +k).
k,k

For a given value of k, the only values of k that can contribute are

k=k-m and k=k-m+N, (93)

presuming that N > K and that m is limited to the range 0: N/2, as in equation (65).

Equation (92) then simplifies to

r(m)= Z g(k)g(k-m)w(k)w(k-m)+I. g(k)g(k-m+N)w(k)w(k-m+N). (94)
k k

When the product

p(k) = g(k) w(k) (95)

is defined, equation (94) can be written as

r(m) = I p(k) p(k - m) + I p(k) p(k - m + N), (96)
k k

which is the sum of two autocorrelations of p(k), one of which is shifted by N units. Thus,

wraparound can be present in correlation estimate r(m) when the condition N > K is imposed.
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In this section, interest is directed at the more stringent condition

N > 2K and m =0:N/2, (97)

for which the last summation in equation (96) is zero because the two p functions involved
cannot overlap; that is, there is no wraparound in the time-delay domain. Thus, the case of
immediate interest is given by the two random variables

r(m) = Y g(k) g(k - m) w(k) w(k- m),
k (98)

q(Z) = E g(k + L) g(k + L - m) w(k) w(k - m),
k

where both m and m are limited to the range 0: N/2.

For non-white input data {g(k)}, and by use of equations (27) and (30), the means of
correlation estimates r(m) and q(m) are immediately available as

E{r(m)} - I C(m) w(k) w(k - m) =C(m) 0,,(m),
k (99)

E{q(m)} I C(rn) w(k) w(k_- T) C(T) bjm).
k

If the length K of weighting {w(k)} is large, correlation estimates (98) will be only slightly
biased near their origins.

The crosscorrelation of the two correlation estimates in equation (98) is

CC - E{r(m)q~m)} = q E{g(k) g(k - m) g(k + L) g(k + L - m)}
k,k (100)

x w(k) w(k - m) w(k) w(k - m).

Using the Gaussian character of the data {g(k)}, the ensemble average is given by

C(m)C(m))+C(k-k-L)C(k-k-L-m+rm)+C(k-k-L +m)C(k-k-L-m). (101)

Substitution of the first product of equation (101) into equation (100) yields the first component
of crosscorrelation CC as
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cc, = C(m) C(r_) I w(k) w(k - m) w(k) w(k - m)
k,k (102)

= C(m) C(mn) 0w(m) 0b,,(m) = E{r(m)} E{q(m)},

by reference to equation (99). Therefore, the sum of the two remaining terms of CC in equation
(100) will yield the covariance of correlation estimates r(m) and q(!!).

The second component of CC is obtained by substituting the second product of equation
(101) into equation (100):

CC2 = ,k - k - L) C(k - k - L - m + m) w(k) w(k - m) w(k) w(k -rm)
k,k

= _ C(p-L) C(p-L-m+ m) _ w(k) w(k-m)w(k-p)w(k -p-m2) (103)
p k

E C(p-L) C(p-L-m+ m)O(m,p,mn+p),
p

where substitution p = k - k was made, and the third-order autocorrelation of the weighting
{w(k)} is defined as

O(m,n,p) = 1 w(k) w(k - m) w(k - n) w(k - p). (104)
k

The approximate evaluation of this third-order correlation is presented in appendix B.

The third component of CC is obtained by substituting the third product of equation (101)
into equation (100):

CC3 = Y C(k-k-L+rm) C(k-k-L-m) w(k) w(k-m) w(k) w(k-mn)
k,k

=I3 C(p-L+m) C(p-L-m). w(k)w(k-m)w(k-p)w(k-p-mn) (105)
p k

= - C(p-L+m) C(p-L-m) O(m,p,m+p).
P

Therefore, according to the observation under equation (102), the final covariance of interest is

cov{r(m),q(m)} = l [C(k - L) C(k - L - m + m) + C(k - L + m) C(k - L - m)] O(m,k,m + k).
k

(106)
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As special cases,

cov{r(m),r(m)} = " [C(k) C(k - m + m) + C(k + m) C(k - m)] O(m, k, m + k) (107)
k

and

var{r(m)} = [C2 (k) + C(k + m) C(k - m)] 9(m,k,m + k). (108)
k
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5. STATISTICS OF CORRELATION ESTIMATES
FOR NON-WHITE DATA AND N _> K

In this section, the less stringent condition, N > K, is considered; the pertinent relation for

the correlation estimate r(m) is then equation (94):

r(m) Y g(k) g(k - m) w(k) w(k - m) + I g(k) g(k - m + N) w(k) w(k - m + N)
k k (109)

--r1 (M) + r, (m),

which exhibits time-delay-domain wraparound in the second term. Also, the additional

correlation estimate q(_m) now takes the form

q(m) = • g(k + L) g(k + L - m) w(k) w(k - m)
k

+ I g(k+L) g(k+L-m+N) w(k) w(k-m±+N) (110)
k

q1(m) + q2 (m),

which also exhibits wraparound in the second term.

The means of these two correlation estimates are immediately available as

"E{r(m)} = C(m) 0,,(m) + C(m - N) obw(m - N), (111)

"E{q(m)} = C(m) w (j!) + C(m- N) 5w (mr- N),

upon use of equations (27) and (30).

The crosscorrelation of estimates r(m) and q(m) is given by

CC = E{r(m) q(mr)} = E{r1 (m) ql (mI)} + E{r1 (m) q2 (1)} (112)

+ E{r2 (m) q, (m)} + E{r2 (m) q 2 (__)} = P + Q + R + S.

The first term, P, is available from equations (109) and (110) as

P E{g(k) g(k - m) g(k + L) g(k + L - m)} w(k) w(k - m) w(k) w(k- m). (113)
k,k

Using the Gaussian character of data {g(k)}, the ensemble average is given by

C(m)C(m)+C(k-k-L)C(k-k-L-m+m)+C(k-k-L+m)C(k-k-L-m). (114)
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Substitution of the first product of equation (114) into equation (113) yields the first term of P as

P1 = C(m) C(m) 0 (iM) 0b (m), (115)

by a now familiar procedure. Substitution of the second and third products of equation (114)
into equation (113), and use of the change of variables p = k - k, leads to the respective terms

P2 = I C(p- L) C(p - L - m + m) 0(m, p,m + p),
P (116)

P3 = C(p - L + m) C(p - L - m) 0(m, p,m + p).
p

For the Q average in equation (112), the ensemble average and the three components of Q are

C(m) C(m -N) + C(k - k - L) C(k - k - L - m + mr-N) (117)

+ C(k - k - L + m - N) C(k - k - L - m),

and

Q, =C(m) C(mZ - N) 0,, (m) 0,w (m - N),

Q=2 C(p - L) C(p - L - m + m- N) 0(m, p,m + p - N), (118)
p

Q3 =Z C(p - L + m - N) C(p- L - m) 0(m, p,m + p - N).
p

The corresponding results for the R average in equation (112) are

C(m - N) C(Q) + C(k - k - L) C(k - k - L - m + m + N) (119)

+ C(k - k - L + m) C)k - k - L - mi+ N),

and

R1 = C(m - N) C(m!) 0,,w(m - N) 0,, (m),

R2 = E C(p-L) C(p-L-m+ m+N)O(mi-N,p,mj+p), (120)
P

R3 = I C(p - L + m) C(p - L - m + N) O(m - N, p, m + p).
p

Finally, the corresponding results for the S average in equation (112) are

C(m - N) C(mn - N) + C(k - k - L) C(k - k - L - m + n - N) (121)

+ C(k - k - L + m -N) C(k-k-L-m+N),

and
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S= C(m-N) C(m-N) qlw(m-N) A.(m-rN),

S2 = 1 C(p-L) C(p-L-m+m)O(m-N,p,m+p-N), (122)
p

S3 = . C(p - L + mr-N) C(p-L-m+N) 9(m-N,p,rm+ p-N).
p

The sum of the first terms of these quantities, namely, P1 + Q1 + R, + S,, is recognized as the
product of the means in equation (111). Therefore, the sum of all the remaining terms in
equations (116), (118), (120), and (122) yields the desired covariance:

cov{r(m),q(m)}

.= [C(p-L) C(p-L-rm+rm)+C(p-L+m_) C(p-L-rm)]9(m,p,mn+p)
p

+ Y [C(p- L) C(p - L- m + m- N) + C(p - L + m- N) C(p - L- m)] O(m,p,m + p- N)
p

+ Y [C(p - L) C(p - L - m + m + N) + C(p - L + m) C(p - L - m + N)] O(m - N, p,n + p)
p

+± [C(p-L)C(p-L-m+m) +C(p-L +m-N)C(p-L-m+N)]O(m-N,p,m+ p-N).
P

(123)

At this point, it is convenient to define the function

T(L, m,m) m [C(p-L)C(p-L-m+ m)
p (124)
+ C(p-L+rm) C(p-L-m)] 9(m,rp,rm+p).

Then, the covariance in equation (123) can be expressed in a compact symmetric form as

cov{r(rn),q(m)} = T(L,rm,rm) +T(L,m,rm- N) +T(L, m - N, m) + T(L,m - N, m - N). (125)

An alternative (slightly simpler) expression for function T(L, m, m) is

T(L,m,m)=Y-[C(k)C(k-m+m)+C(k+m)C(k-m)]O(m,k+L,m+k+L). (126)
k

As special cases of the above, there follows

cov{r(m),r(2!)} = T(O,m,rm) + T(O,m,rm- N) +T(O,rm - N,rm) +T(O,m - N, mr-N) (127)

and

var {r(m)} = T(0, m, m) + T(O, m, m - N) + T(O, m - N, m) + T(O, m - N, m - N). (128)
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The function T(L, m, m) in equation (124) involves

O(m,p,m+ p)= I w(k) w(k -im) w(k -p) w(k -p-m)
k (129)

= h(k,im) h(k - p,mT) H(p, m, m),
k

where auxiliary function

h(k, m) - w(k) w(k - m). (130)

The sequence {h(k,im)} is a product of two weighting sequences, one of which is delayed by m
units. Thus, 0(m,ip,m + p) can be interpreted as a crosscorrelation of {h(k,im)} with {h(k, m)},
versus delayp. Then, the sum onp in equation (124) yields

T(L,m,m) = [C(p - L) C(p - L - m + m) + C(p - L + m) C(p - L - m)] H(p,im, m)
P (131)

= E [C(k) C(k- m + rn) + C(k + m) C(k- m)] H(k + L,im,).
k

For white input data {g(k)}, C(k) = 5(k), yielding

T(L, m, m) = 5(m - m) H(L, m, m) + 5(m + m) Hi(m + L, m,-m). (132)

As a further special case for m = m = 0, there follows

H(L,0,0) = E h(k,O) h(k - L,O) E w2 (k) w2 (k - L). (133)
k k

More generally,

H(L,m,i)= m) h(k,m) h(k-L,m)- aH(L,im), (134)
k

while

T(L,m,m) = 6(m - m) H(L,im), except for m = m = 0. (135)
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6. STATISTICS OF COMPLEX SPECTRAL ESTIMATES

Section 2 treated the statistics of the magnitude-squared spectral estimates. Here, the
quantities of interest are the complex spectral estimates

z(n) Z g(k) w(k) exp(-i2;z nk/N) for n = 0: N-1 (136)
k

and the lagged complex spectral estimates

i(n) = Z g(k+L) w(k) exp(-i2ffnk/N) for n= 0: N-1 (137)
k

for white, Gaussian input {g(k)}.

For later use, define window functions

W1(n) = I w(k) w(k -L) exp(-i2,7cn k/N) forall n (138)
k

and

W2(n)= ] w2 (k) exp(-i2,r nk/N) for all n. (139)
k

Both windows have period N in n while their real parts are even in n and their imaginary parts
are odd in n.

The mean of z(n) is zero, while the two second-order moments of z(n) are

E{z 2 (n)} = Z w 2 (k) exp(-i4)fnk/N) = W2(2n),
k (140)

E{Iz(n)12} 1 w2 (k) = W2(0).
k

The two second-order moments for separated frequency bins n and n are

E{z(n) z(n)} = Y w2 (k) exp[-i 2; f(n + n) k/N] = W2 (n + n),
k (141)E{z(n) z* (n)} := w2 (k) exp[-i2(n-n)k/N] = W2 (n- n).

k

These equations give the complete covariance information about the complex spectral estimates
{z(n)}.
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Let the complex spectral estimate be represented in terms of its real and imaginary parts
according to z(n) = x(n) + i y(n). Then, E{x(n)} = 0, E{y(n)} = 0. Upon substitution into
equations (141), and balancing of real and imaginary parts, there follows

1 m r(/_ ) 1m r( _./)

E{x(fl) x(E)}=IW,,(nl- n)+ IW2 (n+n),
2 - 2

E{y(n) y(n)} = I W2 , (n- n)-l W 2, (n + n),
2 12 (142)

1 1~~~)l z(~)
E{x(n) y(n)} = - W2 (n -n) +- W2 .(n+n),

2 2'
1 1!

E{x(n) y(n)} = 2W 2i(n- n)- + W2z(n + n).
2 - 2'

These equations contain complete covariance information about the real and imaginary parts of
the complex spectral estimates {z(n)}. If n and n are switched in the fourth expression, the
result is equal to the third expression, because Wzj is an odd function. If sequence {W2 (n)} in
equation (139) is computed by means of an N-point FFT, then replace n ± n by mod(n ± n, N).

The second-order statistics of lagged estimate i(n) in equation (137) are identical to the
corresponding terms presented above. Now, let n and n be different (or equal) integers. Then,

E{z(n) i(n)} = E{g(k) g(k + L)} w(k) w(k) exp[-i 2 ir (n k + nk)/N]
k,k

= Z w(k) w(k-L) exp[-i2 rk/N-i2z n(k-L)/N]
k (143)

= exp(i2irnL/N) 1 w(k) w(k- L) exp[-i2 7r(n + n) k/N]
k

= exp(i2ffnL/N) W, (n + n) A(n, n + n).

Also, in a similar fashion,

E{z(n) i * (n)} = Y w(k) w(k -L) exp[-i2 znk/N +i2;Tn_(k -L)/N]
k (144)

= exp(-i 2 z nL/N) W, (n - n) = B(n, n - n).

Equations (143) and (144) contain complete covariance information about the complex spectral
estimates {z(n)} and {f((n)} for arbitrary lag L. That is, temporal overlap is allowed and
accounted for in these relations.

In terms of their real and imaginary components, let

z(n) = x(n) + i y(n), 2(8) = u(n) + i v(n). (145)
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The means of all four real quantities are zero. Substitution of equation (145) into equations
(143) and (144), and balancing of the real and imaginary parts, leads to the second-order
relations:

1 1

E{y(n) v(n)} = - B (n,n-n)-- A,(n,nf+ n),

2_1 2 1 (146)
1 1innn+ A~~~)

E{x(n) v(n)} =-- B (,n-n)+- Ain+n),

1 1innn+ A~~~)
E{y(n) u(n)} ==-B (En-n)+IAi(n,n+n).

2 ' - 2

For this case, the last two expressions are not equal. In terms of the windows defined in
equations (138), (143), and (144), there follows

A(n,n) = exp(i2;fnL/N) W,(n), B(n,n) = exp(-i2;TnL/N) W(n). (147)

Equation (146) contains complete covariance information about the real and imaginary parts of
complex spectral estimates {z(n)} and {i(n)}, for arbitrary lag L.
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7. SUMMARY

The first-order and second-order statistics for spectral estimates and correlation estimates
obtained by means of weighted overlapped FFT processing have been obtained under a variety of
conditions, including colored input data and wraparound in the time-delay domain. These results
often require the definitions of new auxiliary functions that involve the weighting sequence
{w(k)}, its length K, the amount of lag L between data segments, and the size N of the FFTs
involved. In particular, a third-order correlation function of the weighting sequence was required
to evaluate some of the covariances of interest. These auxiliary functions must then be applied
in further summations to obtain the final closed-form results for the desired covariances.
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APPENDIX A
INVERSE DISCRETE FOURIER TRANSFORM PROPERTIES

Function C(k) is nonzero only for Ikl < K. Define discrete Fourier transform

SN () = 1 exp(-i2g mk/N) C(k) for all m, (A-i)
k

where the sum is over all k. Function SN (m) has period N in m.

Now, define the inverse discrete Fourier transform

1

CN (k) = - I exp(i27r km/N) SN () for all k, (A-2)
N m(N)

where the sum is over any length N interval (one period) in m. Function CN (k) has period N
in k; in fact,

CN (k) = C(k) + C(k ± N) + C(k ± 2 N) +.... (A-3)

That is, CN (k) is an aliased version of original function C(k). However, if

N > 2KC, (A-4)

then none of the aliased lobes in equation (A-3) overlap the origin lobe C(k). Then,

C(k) = CN(k) for f k! <Kc = G(k) CN (k) for all k, (A-5)

where "gate function"

I•f~ ki < N/2l
G(k) = j for 1kj < N12 (A-6)0for Jk > N12"

Thus, if N > 2K,, it is permissible to express

Ck) = G(k) exp(i2;' km/N) SN (i) for all k. (A-7)
N m(N)

The gate function G(k) cannot be dropped in this relation.
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As a special case, let m(N) = 0: N - 1 and define

S(m)={SN(M) feir m=0:N-1 (A-8)

Then, for N > 2 KC, equation (A-7) becomes

C(k) = G(k) exp(i2ff km/N) S(m) for all k. (A-9)
Nm

Again, the gate function cannot be dropped in this relation.
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APPENDIX B
APPROXIMATE EVALUATION OF O(m,n,p)

The function 0(m, n, p) was defined in equation (104) according to

0(m,n,p) 1: w(k) w(k-m) w(k-n) w(k-p). (B-i)
k

If weighting {w(k)} varies slowly with k, as when sequence length K is large, the sum on k
becomes approximately

0(m, n, p) f= dx w(x) w(x - m) w(x - n) w(x - p). (B-2)

For example, if Hann weighting

w(k)_ = -cos(2zrk/K) fork =1:K, (B-3)

then

{ cos(2zrx/K) for 0< x< K1
0 otherwise (B-4)

Although the integral in equation (B-2) can be carried out in closed form, it is extremely
lengthy and would be time-consuming to calculate. An alternative approximation is to use

w(x) ) exp!- - x - K J for all x, (B-5)

which matches the Hann weighting (B-4) at its peak. Then, from equation (B-2), there follows

K z Mr 2 2

0(m ,n ,p) =- 4K 2  (3m 2 +3n 2  +3p 2  2mn - 2np - 2pm ) (B-6)

K exp {m2 +n 2 +p2+(m n)2 +(n~p)2+(p~ m)2}l

This approximation yields

K
0(0,0,0) =_ 2 - 0.282 K, (B-7)
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whereas the exact value is

0(0,0,0) = I w4 (k) = K = 0.273 K. (B-8)
k 128

Also, the integral of equation (B-4) yields

fdx 4 (x) = 3___5_ K. (B-9)

128

This suggests that the scale factor 1/(2 V-z) in equation (B-6) be replaced by 35/128.

More generally, consider weighting function

w(x) = 1 - b - b cos(27' x/K) for 0 < x < K; w(K/2) = 1. (B-10)

For b = 0.5, w(x) is Hann weighting, while for b = 0.46, w(x) is Hamming weighting. There
follows

w(x) = exp- b 2 7 x - K j for all x. (B- 11)

Then, equation (B-2) leads to

O(m,n,p) -2 2- exp-b-2-- {mb +n2 +p2  (m-n)2 +(n-p)2 +(p-m)2}j. (B-12)

In particular,

0(0,0,0) K (= 0.294 K for b = 0.46), (B-13)
2 f2--b

whereas the exact value is

0(0,0,0) = K (1-4b + 9b 2 -10b 3 + 4.375b 4 ) (= 0.287 K forb = 0.46). (B-14)

These two functions of b in equations (B-13) and (B-14) are nearly equal for b in the
neighborhood of(0.3, 0.5). In fact, they are equal at b = 0.366948.
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